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The isomers of tricyclic hydrocarbons CpHyn-4 having nelther
side chains nor multiple bonds have been classified into 12 classes
from a graph theoretical point of view. We have also found
an algorithm for deriving all the structures and the numbers of
the isomers, and as an example, we show all the skeletons and
the indices of the isomers in the class for CyjH, To

which Adamantane belongs.

Extensive works on syntheses and rearrangements of tricyclic hydrocarbons
have been dongt but little knowledge seems to have been obtalned about
the structures and the numbers of isomers. We have systematically
studied their structures by a graph theoretical approach.

We express the structures of isomers of CpHyp-4 DY (n,n+2) graphs,
where n is the number of vertices which correspond to carbon atoms
and n+2 is the number of edges which correspond to carbon-carbon
bonds. By remembering the theorem: the number of independent cycles in
a (n,m) graph 1s equal to m-n+l, we see that there are 3 independent
cycles in a (n,n+2) graph. Denoting by p&v,u,and k the numbers of
vertices in a (n,n+2) graph whose degrees are equal to 1,2,3, and 4

respectively (see Table I), we obtain
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1 + 2v + 3u + bk = 2(n+2) (1)
p+Vv+u+k=n (2)
$>0, v>0u>0,k>0 (3)
From (1) and (2) the equation

u+2k=4+g (4)
holds. All the possible (n,n+2) graphs corresponding to carbon frameworks,
in general, should satisfy (2),(3),and (4).

Hereafter we shall consider CpHzpn-4 under the following conditions:

(1) without multiple bonds,

(11) without side chains. Fig.1
Since (il) means X2

=0, (5) X1 X4
we obtain all the integral solutions (g,v,u,k) X3

for a given n as shown in Table II.

Thus we can classify the (n,n+2) graphs 1in question into 3
classes (see the (k,u) column in Table III). And we introduce ©, the number
of self-cycles in a graph, where a self4cycle means the cycle which has
only one vertex of degree 3 or 4. Then the above 3 classes are
classified by © into 2,4,and 4 minor classes respectivély (see the ©
column in Table III). Moreover we introduce Y , the total number of vertices
of degree 3and/or4which belong to independent cycles in a graph. Then
the 5th and 10th classes mentioned above are divided by )_ into
two minor classes respectively (see the ¥ column in Table III). Thus we
finally obtain 12 classes for the (n,n+2) graphs under condition (ii).

In order to derive all the structures in each class, we construct an
index which expresses a manner of assigning vertices of degree 2 to each
edge of a graph.

In the case of the 1lst class we assign labels x1,x2,x3,and x4 to each
edge of a graph (see Fig. 1), and for convenience, by x1,x2,x3,and x4 we

~also express the numbers of vertices on each edge. We impose the conditions
x1 > x4, x2 > x3 (6)

in order to avold repetition caused by symmetry, and from (1) we obtain
xb>2 ,x2>1. (7)

Since the total number of vertices is equal to v, from Table II
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x1 +x2 + x3 +xlt = n—2 (8)

holds for a given n.

We define the index of a graph in the 1lst class as denoting the U4-tuple
of integers (x1,x2,x3,x4) such that x1,x2,x3,and x4 satisfy (6),(7)
and (8).

In the case of the 12th class we assign labels x1,x2,x3,x4,x5,and x6 to
each edge of a graph (see Fig 2). Since 1in this case Condition (1) is
automatically satisfied, we are only concerned with the conditions which

prohibit repetition caused by symmetry. We finally obtained the following:

x1 > x2, x3, x4, x5, x6 , (9)
X2 > x3, x5, x6 , (10)
x1 = x2 == x4 > x6 , (11) Fig'z
x1 = x3 == xb > x5 > x6 , (12) X1 X2
x1 = x4 == x3 > x5, (13)
X2 = X3 ==%» x5 > x6 , (14) 6
X2 = x5 ==p x3 > x6 , (15) X3
x2 = x6 ==% - x3 > x5 . (16)
And from Table II
x1 + x2 +x3 + x4 +x5 + x6 = n-4 (17)

holds for a gilven n.

Then we define the index of a graph in the 12th class as denoting the
6-tuple of integers (x1,x2,x3,x4,x5,x6) such that x1,x2,x3,x4,x5,and x6
satisfy (9) through (17).

In a similar way we can construct the indices for other classes. As
seen above one structure of isomers can be expressed by this index, and
we can easily write a corresponding skeleton from it.

Thus our problem is reduced to obtaining all the r—tuples of integers
which satisfy the condltions for each class, where r is determined for
the class 1in question, and as seen from the above description it is
easy to construct an algorithm to realize our method.

We have implemented the program *ISOMER* for MELCOM 110l1. As one of the
results which we have obtained by using ISOMER, we show all the
skeletons and the indices of the isomers in the 12th class for CigHie

to which adamantane belongs (see Table IV).
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DISCUSSION: Sasaki groug and Hosoya groug studied structures of isomers
of chaln, monocyclic,and bicyclic hydrocarbons under certain conditions.
Whitlock et a{{ studied rearrangements among the isomers of tricyclic
hydrocarbon CyigHig and in course of his work described a classification of
the isomers of CyHyg under the simjlar conditions to ours. They showed 10
classes which are contained in our 12 classes, but they did not describe
its derivation and failed in to find the 9th class of our classification.
BalabaQ studied the structures of isomers of CypHzp (P = 2,3,4,and 5)
under condition (ii). He derived empirically the results by hand, and
it seems that it 1s difficult to apply his method in case p > 5.
Lederberé)studied a system for computer construction, enumeration and
notation of organic molecules as tree structures and cyclic graphs.

He attained to many fruitful results, but he did not completely classify
the ﬁember5~of a set of hydrocarbons CnHg(n) » where f(n) 1s a particular
function of n. Thus our work is characterized as follows: (1) the
isomers of CpHan-4 1S completely classified, (2) the index denoting

each structure of isomers in each class is introduced, and (3) the
program ISOMER has been 1mplemented, by which we can obtain all the

indices for an arbitrary n.
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Table I. Modes of bonds.

Table II. The integral solutions

C C C c # k u v
Mode c——é*—c C-é*—H H*—é*—H H~—C*-H 0 0] 4 n-4
(IJ (l: (|3 H 0 1 2 n-3
Degree 4 3 2 1 0 2 o] n-2
k u v ]
Hydrocarbon Graph & k,u e = Class No
CnHop-g —> (n,n+2)—> 0 2,0 Y{e — 4 m 1
0—6 CD 2
1,2 3 —3 3
2 —sU (::>—<::)(::) 4
1 5 (::>_{EEB 5
| OO | .
| SO |
0, 4 3—3 8
2—=4 (::><::)F<::) 9
| OLD |
0] 8 (::I::I::> 11
Table III. Process for finding classes. 9 12
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Table IV.

Chemistry Letters,

The skeletons and indices of the isomers of qOWsin the 12th class.

at
9

211110

211011

p

210201

e

111111

1 2 3 f 4 5 6 ? 7
600000 510000 500100 420000 411000 410100 410010
8 9 ? 10 11 12 13 14
410001 400200 330000 321000 320100 320010 320001
15% ? 16 17%* ? 18 F 19% ? 20 21%
311100 311010 310200 310110 310101 300300 222000
20% 23 ohx 25 26 27 o8%
221100 221010 220200 220110 220101 220020 211200

* shows the isomers discussed

in 4).

32*% corresponds to Adamantane.
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